Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Guillaume Butler-Laporte; Gundula Povysil; Jack A Kosmicki; Elizabeth T Cirulli; Theodore Drivas; Simone Furini; Chadi Saad; Axel Schmidt; Pawel Olszewski; Urszula Korotko; Mathieu Quinodoz; Elifnaz Celik; Kousik Kundu; Klaudia Walter; Junghyung Jung; Amy D Stockwell; Laura G Sloofman; Daniel M Jordan; Ryan C Thompson; Diane Del Valle Del Valle; Nicole Simons Simons; Esther Cheng Cheng; Robert Sebra Sebra; Eric E Schadt; Seunghee Schulze-Kim Shulze-Kim; Sacha Gnjatic Gnjatic; Miriam Merad Merad; Joseph D Buxbaum; Noam D Beckmann; Alexander W Charney; Bartlomiej Przychodzen; Timothy Chang; Tess D Pottinger; Ning Shang; Fabian Brand; Francesca Fava; Francesca Mari; Karolina Chwialkowska; Magdalena Niemira; Szymon Pula; J Kenneth Baillie; Alex Stuckey; Antonio Salas; Xabier Bello; Jacobo Pardo-Seco; Alberto Gomez-Carballa; Irene Rivero-Calle; Federico Martinon-Torres; Andrea Ganna; Konrad J Karczewski; Kumar Veerapen; Mathieu Bourgey; Guillaume Bourque; Robert JM Eveleigh; Vincenzo Forgetta; David Morrison; David Langlais; Mark Lathrop; Vincent Mooser; Tomoko Nakanishi; Robert Frithiof; Michael Hultstrom; Miklos Lipcsey; Yanara Marincevic-Zuniga; Jessica Nordlund; Kelly M Schiabor Barrett; William Lee; Alexandre Bolze; Simon White; Stephen Riffle; Francisco Tanudjaja; Efren Sandoval; Iva Neveux; Shaun Dabe; Nicolas Casadei; Susanne Motameny; Manal Alaamery; Salam Massadeh; Nora Aljawini; Mansour S Almutairi; Yaseen M Arab; Saleh A Alqahtan; Fawz S Al Harthi; Amal Almutairi; Fatima Alqubaishi; Sarah Alotaibi; Albandari Binowayn; Ebtehal A Alsolm; Hadeel El Bardisy; Mohammad Fawzy; - COVID-19 Host Genetics Initiative; - DeCOI Host Genetics Group; - GEN-COVID Multicenter Study (Italy); - Mount Sinai Clinical Intelligence Center; - GEN-COVID consortium (Spain); - GenOMICC Consortium; - Japan COVID-19 Task Force; - Regeneron Genetics Center; Daniel H Geschwind; Stephanie Arteaga; Alexis Stephens; Manish J Butte; Paul C Boutros; Takafumi N Yamaguchi; Shu Tao; Stefan Eng; Timothy Sanders; Paul J Tung; Michael E Broudy; Yu Pan; Alfredo Gonzalez; Nikhil Chavan; Ruth Johnson; Bogdan Pasaniuc; Brian Yaspan; Sandra Smieszek; Carlo Rivolta; Stephanie Bibert; Pierre-Yves Bochud; Maciej Dabrowski; Pawel Zawadzki; Mateusz Sypniewski; Elzbieta Kaja; Pajaree Chariyavilaskul; Voraphoj Nilaratanakul; Nattiya Hirankarn; Vorasuk Shotelersuk; Monnat Pongpanich; Chureerat Phokaew; Wanna Chetruengchai; Katsuhi Tokunaga; Masaya Sugiyama; Yosuke Kawai; Takanori Hasegawa; Tatsuhiko Naito; Ho Namkoong; Ryuya Edahiro; Akinori Kimura; Seishi Ogawa; Takanori Kanai; Koichi Fukunaga; Yukinori Okada; Seiya Imoto; Satoru Miyano; Serghei Mangul; Malak S Abedalthagafi; Hugo Zeberg; Joseph J Grzymski; Nicole L Washington; Stephan Ossowski; Kerstin U Ludwig; Eva C Schulte; Olaf Riess; Marcin Moniuszko; Miroslaw Kwasniewski; Hamdi Mbarek; Said I Ismail; Anurag Verma; David B Goldstein; Krzysztof Kiryluk; Alessandra Renieri; Manuel AR Ferreira; J Brent Richards.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273040

RESUMO

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p=5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights. Author SummaryCOVID-19 clinical outcomes vary immensely, but a patients genetic make-up is an important determinant of how they will fare against the virus. While many genetic variants commonly found in the populations were previously found to be contributing to more severe disease by the COVID-19 Host Genetics Initiative, it isnt clear if more rare variants found in less individuals could also play a role. This is important because genetic variants with the largest impact on COVID-19 severity are expected to be rarely found in the population, and these rare variants require different technologies to be studies (usually whole-exome or whole-genome sequencing). Here, we combined sequencing results from 21 cohorts across 12 countries to perform a rare variant association study. In an analysis comprising 5,085 participants with severe COVID-19 and 571,737 controls, we found that the gene for toll-like receptor 7 (TLR7) on chromosome X was an important determinant of severe COVID-19. Importantly, despite being found on a sex chromosome, this observation was consistent across both sexes.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262611

RESUMO

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole exome sequencing data of about 4,000 SARS-CoV-2-positive individuals were used to define an interpretable machine learning model for predicting COVID-19 severity. Firstly, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthly, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254005

RESUMO

A locus containing OAS1/2/3 has been identified as a risk locus for severe COVID-19 among Europeans ancestry individuals, with a protective haplotype of [~]75 kilobases derived from Neanderthals. Here, we show that among several potentially causal variants at this locus, a splice variant of OAS1 occurs in people of African ancestry independently of the Neanderthal haplotype and confers protection against COVID-19 of a magnitude similar to that seen in individuals without African ancestry.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252875

RESUMO

BackgroundThere is considerable variability in COVID-19 outcomes amongst younger adults--and some of this variation may be due to genetic predisposition. We characterized the clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent effect, using individual-level data in a large international multi-centre consortium. MethodThe major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this genetic marker with mortality, COVID-19-related complications and laboratory values. We next examined if the magnitude of these associations varied by age and were independent from known clinical COVID-19 risk factors. FindingsWe found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (hazard ratio [HR] 1{middle dot}4, 95% confidence interval [CI] 1{middle dot}2-1{middle dot}6) and COVID-19 related mortality (HR 1{middle dot}5, 95%CI 1{middle dot}3-1{middle dot}8). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (odds ratio [OR] 2{middle dot}0, 95%CI 1{middle dot}6-2{middle dot}6), venous thromboembolism (OR 1{middle dot}7, 95%CI 1{middle dot}2-2{middle dot}4), and hepatic injury (OR 1{middle dot}6, 95%CI 1{middle dot}2-2{middle dot}0). Risk allele carriers [≤] 60 years had higher odds of death or severe respiratory failure (OR 2{middle dot}6, 95%CI 1{middle dot}8-3{middle dot}9) compared to those > 60 years OR 1{middle dot}5 (95%CI 1{middle dot}3-1{middle dot}9, interaction p-value=0{middle dot}04). Amongst individuals [≤] 60 years who died or experienced severe respiratory COVID-19 outcome, we found that 31{middle dot}8% (95%CI 27{middle dot}6-36{middle dot}2) were risk variant carriers, compared to 13{middle dot}9% (95%CI 12{middle dot}6-15{middle dot}2%) of those not experiencing these outcomes. Prediction of death or severe respiratory failure among those [≤] 60 years improved when including the risk allele (AUC 0{middle dot}82 vs 0{middle dot}84, p=0{middle dot}016) and the prediction ability of rs10490770 risk allele was similar to, or better than, most established clinical risk factors. InterpretationThe major common COVID-19 risk locus on chromosome 3 is associated with increased risks of morbidity and mortality--and these are more pronounced amongst individuals [≤] 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk factors, suggesting potential implications for clinical risk management. FundingFunding was obtained by each of the participating cohorts individually.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248853

RESUMO

Within Europe, death rates due to covid-19 vary greatly, with some countries being hardly hit while others to date are almost unaffected. It would be of interest to pinpoint the factors that determine a countrys susceptibility to a pandemic such as covid-19. Here we present data demonstrating that mortality due to covid-19 in a given country could have been largely predicted even before the pandemic hit Europe, simply by looking at longitudinal variability of all-cause mortality rates in the years preceding the current outbreak. The variability in death rates during the influenza seasons of 2015-2019 correlate to excess mortality caused by covid-19 in 2020 (R2=0.48, p<0.0001). In contrast, we found no correlation between such excess mortality and age, population density, degree of urbanization, latitude, GNP, governmental health spendings or rates of influenza vaccinations. These data may be of some relevance when discussing the effectiveness of acute measures in order to limit the spread of the disease and ultimately deaths. They suggest that in some European countries there is an intrinsic susceptibility to fatal respiratory viral disease including covid-19; a susceptibility that was evident long before the arrival of the current pandemic.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-422139

RESUMO

In the current SARS-CoV-2 pandemic, two genetic regions derived from Neandertals have been shown to increase and decrease, respectively, the risk of falling severely ill upon infection. Here, we show that 2-8% of people in Eurasia carry a variant promoter region of the DPP4 gene inherited from Neandertals. This gene encodes an enzyme that serves as a receptor for the coronavirus MERS-CoV and is currently not believed to be a receptor for SARS-CoV-2. However, the Neandertal DPP4 variant doubles the risk to become critically ill in COVID-19.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20212092

RESUMO

Proteins detectable in peripheral blood may influence COVID-19 susceptibility or severity. However, understanding which circulating proteins are etiologically involved is difficult because their levels may be influenced by COVID-19 itself and are also subject to confounding factors. To identify circulating proteins influencing COVID-19 susceptibility and severity we undertook a large-scale two-sample Mendelian randomization (MR) study, since this study design can rapidly scan hundreds of circulating proteins and reduces bias due to reverse causation and confounding. We identified genetic determinants of 931 circulating proteins in 28,461 SARS-CoV-2 uninfected individuals, retaining only single nucleotide polymorphism near the gene encoding the circulating protein. We found that a standard deviation increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (N = 4,336 cases / 623,902 controls; OR = 0.54, P = 7x10-8), COVID-19 hospitalization (N = 6,406 / 902,088; OR = 0.61, P = 8x10-8) and COVID-19 susceptibility (N = 14,134 / 1,284,876; OR = 0.78, P = 8x10-6). Results were consistent in multiple sensitivity analyses. We then measured OAS1 levels in 504 patients with repeated plasma samples (N=1039) with different COVID-19 outcomes and found that increased OAS1 levels in a non-infectious state were associated with protection against very severe COVID-19, hospitalization and susceptibility. Further analyses suggested that a Neanderthal isoform of OAS1 affords this protection. Thus, evidence from MR and a case-control study supported a protective role for OAS1 in COVID-19 outcomes. Available medicines, such as phosphodiesterase-12 inhibitors, increase OAS1 and could be explored for their effect on COVID-19 susceptibility and severity.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-327197

RESUMO

It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by SARS-CoV-2 is inherited from Neandertals. Thanks to new genetic association studies additional risk factors are now being discovered. Using data from a recent genome-wide associations from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region associated with requiring intensive care is inherited from Neandertals. It encodes proteins that activate enzymes that are important during infections with RNA viruses. As compared to the previously described Neandertal risk haplotype, this Neandertal haplotype is protective against severe COVID-19, is of more moderate effect, and is found at substantial frequencies in all regions of the world outside Africa.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-186296

RESUMO

A recent genetic association study (Ellinghaus et al. 2020) identified a gene cluster on chromosome 3 as a risk locus for respiratory failure in SARS-CoV-2. Recent data comprising 3,199 hospitalized COVID-19 patients and controls reproduce this and find that it is the major genetic risk factor for severe SARS-CoV-2 infection and hospitalization (COVID-19 Host Genetics Initiative). Here, we show that the risk is conferred by a genomic segment of ~50 kb that is inherited from Neandertals and occurs at a frequency of ~30% in south Asia and ~8% in Europe.Competing Interest StatementThe authors have declared no competing interest.View Full Text

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20139501

RESUMO

SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast approach to detect SARS-CoV-2 in single or pooled gargle lavages ("mouthwashes"). With this approach, we test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches could be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...